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Abstract
We address the problem of how liquid is partitioned among Plateau borders
in wet two-dimensional foam clusters, and how vertex decoration by Plateau
borders changes the bubble areas and the cluster surface energy. We show
that the surface energy of wet free clusters of given liquid fraction is lower
when the Plateau border pressure is uniform. Furthermore, the surface energy
is minimized if the liquid fraction is such that the (uniform) Plateau border
pressure equals the outside pressure. Straight decoration of the vertices of a
dry foam decreases the area of gas in the bubbles and the total surface energy.
If, however, the gas area is kept fixed (by expanding the foam), then the energy
may go through a minimum. Detailed results are presented for the case of wet
petal clusters.

1. Introduction

In a two-dimensional (2D) liquid foam at equilibrium, the bubbles are bounded by liquid films
which are arcs of a circle. These meet at the equilibrium angles at dry vertices in an ideal
(dry) foam, or at Plateau borders (PBs) in a wet foam, as in the schematic representations of
figure 1. Here we have assumed that the films have negligible thickness even in wet foams, in
which all the liquid resides in the PBs.

This simplified wet foam can be regarded as a particular type of partition of the plane into
regions of two types, G and L (where G denotes the gas in the bubbles, and L the liquid in
the PBs), separated by two types of boundaries (or ‘surfaces’): GG and GL, but not LL. An
example is shown in figure 2. All vertices in such a partition are trivalent (i.e., three-connected)
and are either GGG (a dry vertex) or GGL. A G region is in general bounded by GG and GL
surfaces; an L region is bounded by LG surfaces.

Each surface (GG or GL) has a specific free energy or tension. In an actual liquid foam
the film tension γ of the GG surfaces is usually taken as twice the bulk liquid surface tension
γL, i.e., the liquid–gas interfacial tension (γ = 2γL). This is equivalent to neglecting the
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Figure 1. Films of negligible thickness meet at (a) a (dry) vertex in a dry foam or (b) a three-sided
PB (shaded) in a wet foam for γ = 2γL.

Figure 2. Partition of the plane into regions of types G and L, as in a wet foam cluster with PBs
and films of negligible thickness. This figure was drawn using the Surface Evolver for γ/γL = 2
and contains three- and four-sided PBs of different areas.

interaction between film surfaces and thus the disjoining pressure. Such an approximation is,
however, consistent with assuming that films and PBs are distinct entities, with no transition
region between the two. Under equilibrium the LG surfaces of the PBs then join the films
tangentially, as in figure 1(b).

The equilibrium of 2D foams with G and L regions is governed by generalized Plateau
rules [1] pertaining to the equilibrium of tension forces at the vertices (

∑
i γi = 0) and

of pressures across the circular films and PB surfaces. Note that the equilibrium condition∑
i γi = 0 implies that in a wet foam γ � 2γL. The contractile tendency of the circular

films and PB surfaces is balanced by the pressure differences pi − pk = γik/Rik between
adjacent regions i and k, where γik and Rik are, respectively, the tension and the radius of
curvature of the surface between regions i and k. At any vertex where surfaces ik join, the
relation

∑
ik γik/Rik = 0 holds. We concentrate on free 2D clusters which are embedded in

a gas at pressure p0, as in figure 3. A region (gas or liquid) in the cluster has excess pressure
p∗

i = pi − p0, where pi is the pressure in that region.
For a given topology of a 2D finite cluster embedded in a gas at pressure p0 (see figure 3),

and given areas (or excess pressures) of each of its bubbles and PBs, Plateau’s laws yield a
number of equations equal to the number of unknowns [2]. There may be a unique solution,
but multiple solutions are of course possible [3, 4]. Furthermore, in certain area (or excess
pressure) ranges there may be no solutions.

The amount of liquid in a 2D foam can be specified by the liquid/gas area ratio,
f = AL/AG, or by the liquid fraction φL = AL/(AL + AG); the two are related by
φL = f/(1 + f ). The liquid content has a large effect on foam properties, in particular
its ageing behaviour, its rheological properties and, of course, its surface energy [5]. The latter
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Figure 3. A (2D or 3D) bubble cluster surrounded by gas at pressure p0; only two (four-sided) PBs
(shaded) are shown (angles at junctions and film radii not rendered accurately). A hollow cylinder
of cross-sectional area a has one end inside region 1, of pressure p1, and the other end outside
the cluster. A force F = a(p0 − p1) must act on the piston to equilibrate the pressure difference
between its two sides; in the case shown, p1 > p0.

is defined as

E = LFγ + LLγL, (1)

where LF and LL are the total lengths of the films and of the PB surfaces, respectively.
In this paper we study various problems relating to the energy of 2D wet foam clusters

at equilibrium, such as those that can be formed between two parallel horizontal plates, or
between a liquid surface and a horizontal plate above it. In particular, we address the effect on
the energy of the liquid fraction and of liquid partitioning among PBs, as well as the stability
of clusters in relation to the excess pressures in bubbles and PBs. The paper is organized as
follows. In section 2 we show that the energy is minimized as a function of the area of region
i when the excess pressure in that region vanishes. In section 3 we calculate the change in
bubble area when the vertices of a dry cluster are decorated with PBs. In section 4 we show
that the energy of a wet foam is lowest when the PB pressure is uniform. We also give rough
estimates of the effect of the liquid fraction on the energy. In section 5 we solve simple wet
bubble clusters that illustrate our findings, which we summarize in section 6.

2. Energy and energy minima

In a 2D free foam cluster at equilibrium, the total surface energy E is related to the areas Ai

of the different regions and to their excess pressures p∗
i by [6, 7]

E = 2
∑

i

Ai p∗
i (2)

where the sum is over all regions. This equation suggests that increasing the area of region i
in the cluster may either raise or lower the cluster energy depending on the sign of the excess
pressure p∗

i . To analyse this in more detail, let us consider the change in surface energy when
the area of a given region (say, region 1) is varied, while keeping constant the areas of all other
regions: E = E(A1). The following argument shows that when the excess pressure in that
region vanishes, p∗

1 = 0, the energy E(A1) will be stationary. Consider a hollow cylinder
fitted with a piston of diameter a. One of the two (open) ends of the cylinder is in region 1
and the other is in the outside gas, as in figure 3. The cylinder does not otherwise perturb the
foam. Equilibrium requires the force on the piston to be F = a(p1 − p0); see figure 3. A
displacement dx of the piston changes the area of region 1 by dA1 = a dx . At equilibrium,
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Figure 4. ((a), (b)) Petal bubble clusters with a central bubble of area Ac surrounded by, respectively,
n = 4 and 7 peripheral bubbles of area A each. (c) Definition of geometrical quantities pertaining to
a petal cluster without a central decoration. (d) Petal cluster with a central PB: r0 is the PB surface
radius. (e) Petal cluster with peripheral PBs only: r1 and r2 are the PB surface radii. (f) Photograph
of five-petal cluster with both central and peripheral PBs (courtesy of M F Vaz).

the work performed by the force on the piston, dW = F dx , equals the change in (Helmholtz)
surface free energy, dE , leading to dE = p∗

1 d A1. Thus, for p∗
1 = 0 the free energy is

stationary (presumably a minimum, if the equilibrium is stable). The same conclusion holds
for 3D foams. Note that it may not be possible for p∗

1 to vanish, but if it does then ∂ E/∂ A1 = 0.
For example, in a (dry) petal cluster with n bubbles of area A surrounding an n-sided bubble
of area Ac (see figures 4(a), (b)), it is not possible to have zero excess pressure p∗

c in the
central bubble for any Ac/A if n < 6 [8]. These petal clusters were found to be unstable
when the excess pressure in the central bubble is negative and dE/d Ac < 0 [3, 8], which
may happen for n > 6. However, a negative excess pressure may not be a sufficient condition
for instability of a wet foam: for example, we found, using the Surface Evolver [9], that a
triangular PB surrounded by three identical bubbles (similar to that in figure 4(c)) is stable for
negative excess pressure of the liquid.

Since the PBs are connected by the films, the liquid in the cluster is expected to have
uniform pressure pL (excess pressure p∗

L = pL − p0); we may thus rewrite equation (2) as

E = 2
∑

bubbles

Ai p∗
i + 2AL p∗

L. (3)

As the liquid fraction is changed at fixed bubble areas, the energy is minimal when p∗
L = 0,

i.e., when the excess pressure in the liquid vanishes.

3. Vertex decoration by Plateau borders

Three-sided (triangular) PBs in 2D foams are special in that they are decoration PBs, i.e., PBs
to which the decoration theorem [16, 17] applies. This theorem states that the circular film
prolongations into a three-sided PB at equilibrium meet at a single point at angles of 2π/3.
(This also applies to any other three-sided decorations, of any γD/γ � 1/2, at equilibrium,
where γD is the (uniform) tension of the decoration surfaces.) Conversely, a dry triple film
junction can be decorated with a PB (or some other decoration) without disturbing the films.
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Figure 5. ((a) and (b)) triangular PB with mirror symmetry plane: the PB surfaces have radii r1,
r1 and r2 and the PB regions bounded by the PB surfaces and the film prolongations (dashed lines)
have areas A31 and A32. (c) Regular four-sided bubble decorated with triangular PBs at its vertices
(only one is shown). (d) Regular seven-sided bubble decorated with triangular PBs at its vertices
(only one is shown). In (c) and (d), R is the radius of the bubble films and 2θ is the angle they
subtend.

The decoration property does not apply to n-sided PBs with n > 3, except in special cases,
such as n-fold symmetric regular PBs [18].

In view of the decoration theorem, an excess energy ε3 may be defined for three-sided
PBs which is given by [18]

ε3 = LPBγL − Lprolγ, (4)

where LPB and Lprol are the lengths of the PB surfaces (of tension γL) and of the film
prolongations into the PBs (of tension γ ), respectively; for ‘normal’ PBs (γL = γ /2), the
excess energy is negative.

We have shown [18] that the ratio ε3/(γ
√

A3) (where A3 is the area of the three-sided PB)
is weakly dependent on the size and shape of the PB, and takes on a value close to that for a
regular three-sided PB, which for γL = γ /2 is

ε3

γ
= −

[(√
3 − π

2

)
A3

]1/2 � −0.4016
√

A3. (5)

The area A3 of a regular three-sided PB is in turn related to the radius r of its surfaces by
√

A3 � 0.4106r, (6)

i.e., by the same proportionality constant as in equation (5).
In what follows we examine the partitioning of the liquid in a three-sided PB among the

three bubbles that it ‘invades’ when a dry vertex is decorated. Our purpose is to find the
change in the area of a bubble when all its vertices are decorated with (triangular) PBs. We
calculate this change for regular n-sided bubbles, which in their dry state consist of n identical
circular films of radius R meeting at internal angles of 2π/3, and n straight films symmetrically
connected to its n vertices, as illustrated in figures 5(c), (d) for n = 4 and 7. The area AG0 of
the undecorated (dry) bubble is

AG0

n
= R2

(
sin2 θ cot

π

n
+ θ − sin θ cos θ

)
, (7)
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where

θ = π

(
1

n
− 1

6

)

, (8)

is the angle between the films and their chords (see figures 5(c), (d)). For n > 6 we take
R > 0; for n < 6, R < 0; for n = 6, 1/R = 0. We decorate the n-vertices with triangular
PBs of area A3 each (see figures 5(c), (d) again). These PBs have a mirror symmetry plane
(see figure 5(a)) and surface radii r1, r1 and r2, in terms of which we write the PB area A3, its
excess energy ε3 and the areas of liquid A31 and A32 bounded by the film prolongations and
the PB surfaces of radii r1 and r2 respectively (see figure 5(b)), with

A3 = 2A31 + A32, (9)

expressions for which are derived in the appendix.
Equilibrium of pressures requires that (when γ = 2γL)

1

r2
− 1

r1
+

2

R
= 0. (10)

Equation (A.7) of the appendix gives the area A3 of the triangular PB as a function of r1 and
r2, and equations (A.9) and (A.10) give the area A32 of the liquid that ‘invades’ the bubble.
This equals the decrease in the bubble gas area due to decoration of one of its dry vertices with
a PB. The bubble area after decoration with n PBs is thus

AG = AG0 − n A32. (11)

In figure 6(a) we plot the area fraction A32/A3 versus A3/AG for several n: it is an
increasing function for n > 6 and a decreasing function for n < 6. For n = 6, it equals 1/3.
Figure 6(b) shows the total area n A32 of gas removed from a regular n-sided bubble due to
decoration of its n vertices with PBs of area A3 each, versus A3/AG: the dependence is nearly
linear, with a coefficient of proportionality that is in turn approximately proportional to n. The
larger n, the larger the fraction of gas area ‘lost’ on decoration of regular n-sided bubbles of
fixed area.

Lewis’s law [10–13], which approximately applies to 2D foams [14, 15], relates the average
area 〈A〉n of n-sided bubbles in a (large) random cluster to n:

〈A〉n = 〈A〉 [1 + c(n − 6)] , (12)

where 〈A〉 ≡ 〈A〉6 is the average bubble area and c is a constant (0 < c < 1/3); bubbles
with more sides have larger average area and vice versa. If we now decorate all vertices of a
dry random foam with PBs of area A3 each, the average fraction of gas area removed from an
‘average’ regular n-sided bubble, n A32/〈A〉n , is approximately the same for all n, as shown in
the plot of figure 6(c) for c = 0.25, which is in reasonable agreement with experiment [14, 15].
Therefore on average, each bubble suffers approximately the same percentage area reduction
when PBs are placed at all its vertices. We shall use this result in the following section.

4. Liquid partitioning and the energy of wet clusters

Starting with a dry 2D foam cluster (with threefold vertices) and given bubble areas, we can
construct related wet clusters by placing triangular PBs of uniform pressure at all its vertices.
This can be done without disturbing the films (cf decoration theorem [16, 18]), but the area of
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Figure 6. (a) Fraction of PB area that invades a regular n-sided bubble, A32/A3, versus relative
size of PB, A3/AG, where AG is the area of gas in the bubble. (b) Area fraction of liquid inside a
bubble, n A32/AG, versus relative size of PB, A3/AG; n A32/A3 is nearly independent of A3/AG
and n. (c) n A32/〈A〉n versus relative size of PB, A3/〈A〉, where 〈A〉n is the average area of an
n-sided bubble and 〈A〉 = 〈A〉6 is the average bubble area (see equation (12)). Here c = 0.25, for
which the curves for different n collapse very well onto one another.

gas in the bubbles will change. The energy of the wet cluster is

E = E0 +
∑

i

ε3i , (13)

where E0 is the energy of the dry cluster and the sum is over all PBs, of excess energy ε3i each.
If the pressure in the (triangular) PBs is uniform, we expect their surface curvatures to also be
fairly uniform, at least when they are are much larger than the film curvatures, as is the case
in a fairly dry foam. The PB areas Ai and excess energies ε3i are then also fairly uniform, as
discussed at the beginning of section 3.

Uniformity of the PB areas is associated with a low cluster energy, as the following
argument shows. Let AL = ∑

i Ai be the total area of liquid in the three-sided PBs. The
difference between the energies of the wet and dry cluster is E−E0 = ∑

i ε3i ≈ −c3γ
∑

i

√
Ai

where c3 � 0.4016, cf equation (5). Now if
∑

i Ai is kept fixed,
∑

i

√
Ai is maximal when

all Ai are identical, whence the energy is lower if all PBs have the same area (hence nearly
uniform pressure).
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We may replace
∑

i ε3i in equation (13) by V ε3, where V is the number of vertices (or
PBs) in the cluster and ε3 is the average excess energy. Since ε3i and Ai are fairly uniform,
we may take ε3 = −c3γ

√
A3, with V A3 = AL. From equation (5) we have

E

γ
= E0

γ
− c3V

√

A3 = E0

γ
− c3

√
V

√
AL. (14)

Thus in the case where the PBs are introduced at constant total cluster area Ac, the energy
decreases linearly with increasing AL, i.e., with increasing liquid fraction φL = AL/Ac.

We now turn to decoration at constant bubble gas areas, which more realistically describes
the wetting of an actual foam by added liquid. The films are disturbed and the change in energy
has to be calculated once the new geometry has been found. However a rough estimate of
the energy change can be made. We start by uniformly magnifying the dry cluster to an area
AG + AL, where AG is the fixed total gas area (the area of the dry cluster) and AL is the area of
liquid to be inserted. To achieve this the original cluster area AG is multiplied by 1 + AL/AG,
hence its linear dimensions and energy are multiplied by (1 + AL/AG)1/2. From the conclusion
drawn at the end of the preceding section it follows that, after decoration with the PBs, the
area of gas in each bubble is approximately restored to its original value. The energy becomes

E = E0

(

1 +
AL

AG

)1/2

+
∑

i

ε3i . (15)

Taking, as before,
∑

i ε3i = −c3γ
√

V
√

AL, we may rewrite equation (15) as

E = E0

(

1 +
AL

AG

)1/2

− c3γ
√

V
√

AL, (16)

or, dividing by γ
√

AG,

E

γ
√

AG
= E0

γ
√

AG

(

1 +
AL

AG

)1/2

− c3

√
V

√
AL

AG
. (17)

As AL/AG increases from zero, the energy goes through a minimum at
(

AL

AG

)∗
=

[
1

c2
3V

(
E0

γ
√

AG

)2

− 1

]−1

. (18)

This minimum may not be attained if it is pre-empted by PB coalescence, as in the case of a
decorated regular honeycomb foam [18]. As discussed above, we expect this energy minimum
to be associated with zero excess pressure in the liquid. In the next section we test equation (18)
for a three-petal cluster.

5. Calculations of wet petal clusters

We illustrate the foregoing discussion with calculations for clusters which, when dry, consist
of n bubbles of equal areas (‘petals’) joined at an n-fold vertex, as in figure 4(c) for n = 7;
these dry clusters are of course not stable when n > 3. The area A0 of one petal bubble is
related to the radius R0 of the circular outer films by

A0 = R2
0

[
sin2 θ cot

π

n
+ θ − sin θ cos θ

]
, (19)

where

θ = π

(
1

n
+

1

6

)

, (20)
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Figure 7. Reduced energy E/(nγ
√

AG) (top) and reduced excess pressure A1/2
G (pL − p0)/γ

(bottom) versus [AL/(n AG)]1/2 for a petal cluster with a central PB of area AL.

is half the angle subtended by the arc of radius R0 (see figure 4(c)). The total energy of the
dry cluster is

E0

nγ
= 2R0

(
sin θ

2 sin π
n

+ θ

)

. (21)

The n-fold vertex can be decorated with a regular PB bounded by n arcs of circle of radius
r each, as in figure 4(d). The area AL of this central PB is

AL

n
= r2

(

cot
π

n
+

π

n
− π

2

)

, (22)

the area AG of gas in one bubble is

AG = A0 − AL

n
, (23)

and the PB excess energy εn , defined as for triangular PBs as the difference between the energy
of the PB surfaces and that of the film prolongations into the PB, which do indeed meet at a
single point, is [18]

εn

nγ
= r

(

− cot
π

n
+

π

n
− π

2

)

. (24)

The energy E of the wet cluster is

E = E0 + εn . (25)

In figure 7 we plot the reduced energy E/(nγ
√

AG) and the reduced excess pressure
A1/2

G (pL − p0)/γ versus the liquid/gas area ratio [AL/(n AG)]1/2. As predicted in section 4,
the energy has a minimum when the pressure in the PB equals the outside pressure (pL = p0).

We have also calculated a wet cluster obtained by decorating the n-petal dry cluster with
n identical peripheral PBs (see figures 4(e), (f)). These PBs have a mirror plane of symmetry
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Figure 8. The same as figure 7, but for a petal cluster with n peripheral PBs of total area AL.

and surface radii r1, r1 and r2, which are related to R0 by equation (10). 1/R0 has the same
sign as n − 6. The required equations are derived in the appendix. Upon decoration, the area
of gas in each bubble becomes

AG = A0 − 2A31, (26)

where A31, given by equation (A.9), is the area between the PB surface of radius r1 and the
film prolongations. The total area of liquid is AL = n A3, with A3 given by equation (A.7).
The excess energy ε3 per peripheral PB is in turn given by equation (A.8); the total surface
energy is

E = E0 + nε3. (27)

In figure 8 we plot the reduced energy E/(nγ
√

AG) and the reduced excess pressure
A1/2

G (pL − p0)/γ versus [AL/(n AG)]1/2 for the petal cluster with peripheral PBs. Again
there is an energy minimum for pL = p0.

Finally, we have calculated the wet petal cluster with central and peripheral PBs. For
fixed liquid fraction φL = AL/AG, where AL is the total area of liquid and AG the area of one
bubble (after decoration), we found the total energy for various n, which is shown in figure 9(a)
as a function of r1/r0, where r0 and r1 are, respectively, the radii of the central PB and of the
peripheral PB surfaces within the cluster (see figures 4(d), (e)): the pressures in the two types
of PBs are the same if r1/r0 = 1. It is apparent that the energy minimum occurs for r1/r0

close to, but not exactly, unity, in agreement with the discussion in section 4. The smaller the
liquid fraction, the closer the energy minimum lies to the point of uniform liquid pressure;
see figure 9(b). It is also apparent that the lowest minimum occurs at some intermediate φL:
for n = 3, this is φL ≈ 0.054, to be compared with φL ≈ 0.025 from equation (18) with
equations (19)–(21).
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Figure 9. Petal cluster with one central and n identical peripheral PBs. (a) Reduced energy
E/(nγ

√
AG) versus r1/r0 for different liquid fractions φL. (b) r1/r0 at the minimum of the energy

versus liquid fraction φL; at small φL, the minimum occurs for nearly uniform PB pressure.

6. Summary

We have discussed a number of issues relating to the partitioning of liquid over the PBs of 2D
bubble clusters. We used a model foam in which the films have zero thickness and are joined
tangentially by the PB surfaces (i.e., γ = 2γL). We have shown that the energy of a foam
cluster embedded in a gas at pressure p0 goes through a minimum as the area Ai of the i th
bubble or PB is changed at constant areas of the remaining bubbles and PBs, when the excess
pressure pi − p0 vanishes. We illustrated this property by performing detailed calculations of
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a wet petal cluster, consisting of n identical bubbles (the petals) surrounding a central n-sided
PB, with and without peripheral PBs. Its energy goes through a minimum when the PB areas
are such that the excess pressure vanishes.

When the vertices of an initially dry cluster are decorated with triangular PBs all of the
same area, the area of gas in each bubble changes, but in approximately the same proportion
for all bubbles, independent of the number of sides. At fixed liquid fraction, the energy of
a decorated wet foam is minimal when the pressure in the PBs is nearly uniform, which is
expected to be the case in actual foams, whose PBs communicate through the liquid films. We
verified this for a petal cluster with central and peripheral PBs. If all PBs are triangular, (near)
uniformity of pressures is equivalent to (near) uniformity of PB areas.

When a foam is wetted at fixed bubble areas, it expands in an approximately uniform
manner and its surface energy (of films and PB surfaces) initially decreases, until a minimum
is eventually reached. This contrasts with straight vertex decoration with PBs at fixed total
cluster area, which always lowers the energy.
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Appendix. Triangular Plateau borders with a mirror plane of symmetry

The PB surfaces (of tension γL) have radii r1, r1 and r2 (see figure 5(a)); the radii of the two
circular films (of tension γ = 2γL) joining the PB is R (the other film is straight). We take r1,
r2 and R to be positive as in figure 5(a); equilibrium of pressures requires

1

r1
− 1

r2
− 2

R
= 0. (A.1)

The angles subtended by the PB surfaces of radii r1 and r2 are, respectively, 2θ1 and 2θ2, which
are related by

θ1 = π

2
− 2θ2. (A.2)

The chord lengths l1 and l2 are given by

l1 = 2r1 sin θ1, (A.3)

l2 = 2r2 sin θ2, (A.4)

leading to

2 sin2 θ1 = 1

1 + r1/r2
. (A.5)

The two circles of radius R are prolonged into the PB. Let 2α be the angle subtended by the
prolongation arcs. Simple calculations yield

R cos

(
π

3
+ 2α

)

= R

2
− r2 sin θ2, (A.6)

and for the area of the PB,

A3 = r1r2 sin 2θ1 sin θ2 − 2r2
1 (θ1 − sin θ1 cos θ1) − r2

2 (θ2 − sin θ2 cos θ2) , (A.7)



Wet two-dimensional bubble clusters: liquid partitioning and energy 2339

and for the excess energy ε3, defined as the difference between the energy of the three PB
surfaces and that of the three film prolongations (which meet at a single point),

ε3

γ
= 2r1θ1 + r2θ2 −

[

4Rα + 2r1 sin θ1 cos θ1 − 2R sin α cos

(
π

3
+ α

)]

. (A.8)

The film prolongations divide the PB into three regions, each bounded by two prolongations
and a PB surface. The areas of these regions, shown in figure 5, are

A31 =
[

r1 sin θ1 cos θ1 − R sin α cos

(
π

3
+ α

)]

r2 sin θ2

− r2
1 (θ1 − sin θ1 cos θ1) + R2(α − sin α cos α), (A.9)

A32 = A3 − 2A31. (A.10)
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